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Superintegrable Chiral Potts Model: 
Thermodynamic Properties, an "Inverse" 
Model, and a Simple Associated Hamiltonian 
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The partition function of the N-state superintegrable chiral Potts model is 
obtained exactly and explicitly (if not completely rigorously) for a finite lattice 
with particular boundary conditions. This yields the bulk and surface free 
energies, and horizontal and vertical correlation lengths and interracial tensions. 
The critical exponents are ~ ~ 1 - 2 / N ,  #hot = Vho~ = 2/N, and #vm = Vvert = 1, 

and the finite-size corrections are obtained at criticality. The eigenvalue 
spectrum of the column-to-column transfer matrix is that of a direct product of 
N by N matrices. Inverting this matrix gives a related solvable model which is 
a generalization of the free-fermion model. The associated Hamiltobian has a 
very simple form, suggesting there may be a more direct algebraic method 
(perhaps a generalized Clifford algebra) for obtaining its eigenvalues. 

KEY WORDS:  Statistical mechanics; exact solution; chiral Potts model; 
anisotropic scaling; wetting; conformal invariance; Clifford algebra. 

1. I N T R O D U C T I O N  

Recently, a new class of two-dimensional lattice models have been 
discovered ~1~ that satisfy the star-triangle (or Yang-Baxter) relation. On 
each site i of a lattice there is a spin ai, taking the values 0 ..... N -  1. There 
are particular two-spin interactions between adjacent spins. Like the Potts 
model, the interactions are Zx-symmetric, but they are chiral, in the sense 
that they are not reflection-symmetric. Exact (if unwieldy) equations for the 
free energy have been obtained in the infinite-lattice limit. (2) 

An intriguing special case occurs when the model is "superintegrable." 
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It has been s h o w n  (3'4) that the row-to-row transfer matrix Tro w then has a 
set S of eigenvalues, which have a particularly simple form. Provided the 
largest eigenvalue of Tro w is contained in S, this makes it easy to obtain the 
bulk free energy explicity as an integral of elementary functions. 

Albertini e t  al.  ~5) have very recently found, for toroidal boundary con- 
ditions and close to criticality, that the largest eigenvalue is n o t  contained 
in the set S. However, as was remarked in ref. 4, if we impose suitable 
fixed-spin boundary conditions on the top and/or bottom rows of the 
lattice, then only those eigenvalues in S can contribute to the partition 
function Z. 

Here we consider a model with such fixed-spin boundary conditions at 
both the top and bottom of the lattice, and cyclic (cylindrical) boundary 
conditions from right to left. In Sections 2 and 3 we obtain explicit expres- 
sions for Z for a f i n i t e  lattice of arbitrary size. These results have been 
reported earlier. ~6) They do depend on the assumption that the matrix P in 
Section 2 is independent of the variable k': this is unproven, but is plausible 
and numerically tested (see Appendix B). 

In Section 4 the results are used to deduce the full eigenvalue spectrum 
of the column-to-column transfer matrix Tcol. This turns out to be 
extremely simple: basically just a direct product of N by N diagonal 
matrices. In Section 5 we discuss the duality relation, and show that it 
maps the model to one with free boundary conditions on the top and 
bottom row, and shifted cyclic boundary conditions from right to left. 

We consider the large-lattice limit in Section 6. We show that these 
results yield not only the bulk free energy, but also a surface free energy 
due to the fixed (or free) spin boundary condition, and horizontal and 
vertical correlation lengths and interracial tensions. (The vertical properties 
differ from those usually defined: in particular, for N =  2 they reduce to the 
known Ising results only when Trow is Hermitian. Even, so they may have 
the same critical exponents.) The corresponding critical exponents [defined 
in (6.27)] are 

cz = 1 - -  2 I N ,  o L, = 2 - 2 I N  

/~hor = Vhor = 2 I N  (1.1) 

]2vert ~ Vvert ~ 1 

These results have been reported earlier, ~3'4~ but without a clear 
distinction between the horizontal and vertical properties. They satisfy the 
relations 

~s  ~ ~ ~- Yvert 

Vhor + Vve~t = 2 -- C~ (1.2) 

# h o r  ~ Yhor~ ,/~vert ~- Vvert 
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The first of these follows from finite-size scaling [Eqs. (3.18a) and 
(3.22) of ref. 7]. The others can be thought of as variants of the usual 
scaling relations g + v = 2 -  ~ = dv for an intrinsically anisotropic two- 
dimensional system. (a) From this point of view it is critical isotropy that is 
violated by this model, rather than scaling. This is also apparent from the 
finite-size corrections for the critical case, which are shown to differ from 
the usual inverse power form (9'1~ predicted by conformal invariance. 

Another phenomenon exhibited by the model is that of interracial 
"wetting" (w of ref. 11). For sufficiently large N it can be energetically 
favorable for two ordered phases to be separated by one or more other 
phases. 

In Section 7 we return to the exact results for the finite lattice and 
show that they can be extended to an inhomogeneous system, where the 
Boltzmann weight parameters (including k') vary from row to row. (This 
provides an alternative way of going from fixed to free boundary condi- 
tions.) We remark that the direct product eigenvalue spectrum of Tool is 
very similar to that of the Ising model, which is the N =  2 case of this 
superintegrable chiral Potts model. Indeed, the underlying equations are 
identical (being independent of N): given the eigenvalue spectrum for the 
Ising model case, one can deduce at once the spectrum for general N. 

This implies a close connection between the Ising model and the 
superintegrable chiral Potts model, so we have started to investigate this 
further. The matrix Too I is a product of local transfer matrices, correspond- 
ing to individual edges of the lattices. It is therefore easy to invert, and its 
inverse is a rather simple sparse matrix, corresponding to a model in which 
either horizontally adjacent spins are equal or the left-hand spin is one 
greater than the right-hand spin. 

This new "inverse" model is defined in Section 8 and is a generaliza- 
tion of the free-fermion model. We obtain its partition function (for the 
finite lattice) explicitly. 

We also obtain the eigenvalues of an associated non-Hermitian 
Hamiltonian. This Hamiltonian has a simple structure, and is an N-state 
generalization of the one-dimensional Ising model in a transverse field. All 
its coefficients are abitrary, yet its eigenvalues are always simple direct 
sums. This is intriguing: it suggests that there may be a much more direct 
way of obtaining the eigenvalues, perhaps a generalization of the Clifford 
algebra (i.e., fermion operator) method that solves the Ising model. 

2. D E F I N I T I O N  OF T H E  M O D E L  

Consider the square lattice, drawn diagonally as in Fig. 1, with M + 1 
rows, each of L sites. Impose cylindrical boundary conditions connecting 



4 Baxter 

0 0 0 0 0 
M+] 

3 

2 

] 
O O O a G 

Fig. 1. The square lattice L~, with periodic boundary conditions at the sides, and fixed spin 
boundary conditions at top and bottom (with values 0 and a). 

the left and right boundaries .  At each site i place a spin ai, taking the 
values 0,..., N - 1 .  Fix the spins in the top (bo t t om)  row to have value 
0 (a), as indicated. Adjacent  spins cri, aj on southwest  to nor theas t  edges 
(with i below j )  interact  with Bol tzmann  weight W ( o i - a j ) ;  those on 
southeast  to nor thwest  edges with weight W ' ( ~ i - a j ) .  The  functions W, 
are given by 

W ( n )  = W ( N  + n ) =  /~n I~ (1 - ycoJ)/(1 - xco -j) 

j= l  (2.1) 
n 

ff/(n) = IZV(N+n)--=/~ n 1-[ ( co-xcoJ ) / (  1 - YcoJ) 
1 =  1 

where co = e 2~i/N, x and y are pa ramete r s  (in general complex)  that  are at 
our  disposal,  and 

#N= (x~,V_ 1)/(yN__ 1) (2.2) 

The par t i t ion function, which depends on a, is 

Z , : ~  ]-[ E(a,-a:) (2.3) 
o < i , j )  

where the outer  sum is over  all values of all the spins, the produc t  is 
over  all edges ( i , j )  of  the lattice, and the function E is either W or W, 
depending on the or ienta t ion of the edge. We take x, y, /~ to be the same 
for all edges in the same row, but possibly different in different rows. 

The row- to- row transfer matr ix  is defined in the obvious  way in ref. 4. 
It can be thought  of as a function Trow(X, y)  of x and y. Strictly, we should 
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distinguish, as in ref. 4, between transfer matrices for odd and even rows. 
However, since they differ only by cyclic shifts of the column indices 1,..., L 
in one of the rows, and we shall only consider the "zero-momentum" space 
of vectors invariant such shifts, the distinction here is immaterial. 

Because of the star-triangle relation, (1) two matrices T row(X, y) (with 
different x and different y) commute provided they have the same value of 

k ,= (x N -  1 ) ( y  N -  I)/(yN--x N) (2.4) 

Taking the limit x, y, #---, 1, we find that they also commute with the 
Hamiltonian 

L N 1 

= --2 E E (ZYZf-+I-1- k ' • ; ) / ( 1  - - c o  - n )  (2 .5 )  
j = l  n--I  

This is the Hamiltonian considered in refs. 3 and 5, and the operators Xj, 
Zj are defined therein (our k', L are there replaced by 2, jIr). All we need 
note is that 

H = ~o + k'Jr (2.6) 

where 2~o and ~ are independent even of k', depending only on N and L. 

2.1. Nonposi t iv i ty  of the Bol tzmann Weights  

This model is a special case of the solvable chiral Potts model in which 
the vertical rapidity p is fixed so that (in the notation of ref. 1) ap = bp = 1, 
Cp = d; = tl, x = tlaq/d q, y = Cq/rlbq, where r/= [ ( 1 + k ' ) / (  1 - k ' )  ] I/2N. In the 
notation of ref. 2, this implies Vp = -~z/2, Up= - r ~ / 2 + / c o s  h - ~ ( 1 / k ) .  We 
are therefore outside the physical range discussed in ref. 2, where k' ,  Up, Uq 
are real, k' >0 ,  0 < u q - U p  < re, and the weight functions W(n) ,  g / (n)  are 
positive real. Instead, here we shall focus (in Section 5) on the case when 
k ' , x ,  y are positive real and 1 < x < y <  oo. For  N = 2  this is the 
ferromagnetic case of the Ising model, but for N >  2 this does imply that 
W(n) ,  f f /(n) are complex. This is unphysical, but we feel the model is still 
interesting for various reasons. Its solution yields eigenvalues of the 
Hamiltonian H: this is Hermitian and physically interesting. The partition 
function satisfies Z*  = Z _ a =  ZN_a, SO Z 0 is real and in fact positive, as 
are the Fourier coefficients of Za,  which occur naturally and are defined in 
(3.2). Many equivalences have been discovered between lattice models: it is 
possible that this model, with complex weights, is in some sense equivalent 
to another model with real, positive weights. (Just as, for example, the 
staggered six-vertex model is equivalent to the usual q-state Potts model: 
cf. w167 12.4 of ref. 12, where 2 is pure imaginary if q < 4 . )  
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2.2. Eigenvalues of Tro w 

The state of a row of L spins a~ ..... 0-L is specified by 0- = {or1,..., O-L}. 
There are N L such states. Let uj (for j = 0,..., N -  1 be the NL-dimensional  
vector with elements 

(i.e., its elements 
Q = 0 ,  1 ..... N - l ,  let 

(uj)~ = 6(0-~, j ) . . .  6 ( ~ ,  j )  

are zero unless 0-1 = 0"2 = ' �9 = 0-L = J ) .  

(2.7) 

Also, for 

N - - 1  

v o = N  1/2 ~ e) 0 %  (2.8) 
j = 0  

Successively premult iplying v o by Trow(X, y)  (in general with different 
values of x and y, but  the same value of k')  generates a set of vectors which 
we can take to be the basis of a vector space V o. This will be a subspace 
of the full NL-dimensional  space on which Tro w acts. 

Define 

G =  - 1  + k ' ( x X +  1)/(x N -  1 ) =  (xA~y ev- 1 ) / ( yU- -x  N) (2.9) 

p = (X-- I)/(X N -  1) ~/N (2.10) 

and, for Q = 0, 1,..., N -  1, consider the expression 

N - - I  

P(zN)  = z -Q Y~ 
n=O 

a)(~ + c)n{(zU-- 1)/(Z-- COn)} c (2.11) 

The rhs of (2.11) is a polynomial  in Z N,  of degree 

m = integer part  of [ (NL  - L -  Q)/N] (2.12) 

x and so P(x)  is a polynomial  of this degree. Let its zeros be z N, ZN,..., Z m 
define, for j = 1,..., m and Q = 0, 1 ..... N -  1, 

cos 0g= (1 + zU)/(1 --Z N) (2.13) 

CQ = N L x - Q / {  (Zk') m (1 - -  x-N)  L-m-L/N } (2.14) 

In ref. 4 it was shown that the eigenvalues Arow(X, y) of Trow(X, y) 
with eigenvectors in V e are 

Arow(X ,y )=CQp L f i  [G++_( l+k '2 -2k '  cosOj) 1/2] (2.15) 
j--I 
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for Q = 0, 1,..., N - 1  and all 2 m independent choices of the signs of the 
square roots. This is the set of eigenvalues referred to above as S. (One 
moderately substantial step in the working was not explicitly given in ref. 4: 
for completeness we include it here in Appendix A.) 

The functional method used in ref. 4 rigorously predicts that any 
eigenvalue in S must be of the form (2.15), but it tells us nothing about the 
eigenvectors (except that they depend on x and y only via k' and are the 
same for Trow as for ~f~), nor does it predict how many times any particular 
eigenvalue occurs, if at all. However, from small-L and numerical calcula- 
tions on ~ (discussed in Appendix B), it appears that each eigenvalue 
occurs just once, and that VQ is of dimension 2 m. Further, these calcula- 
tions imply that VQ is closed not only under multiplication by 2C, but 
under multiplication by ~0 and ~ separately; and that VQ is the smallest 
such subspace. (In fact it was generated numerically by such multiplica- 
tions.) This means that VQ is independent of k', depending only on N 
and L. 

The operators T . . . .  Jt~, ~0, and ~ can therefore be restricted to the 
subspace Ve, wherein theyare  represented by 2 m by 2 m matrices, which we 
call if'row, ~ ,  ~0, and Jt~l, respectively. From (2.5), .~  is Hermitian: 
provided we choose a k'-independent orthogonal basis for VQ, 2~ must 
also be linear in k' and Hermitian. 

From (2.15), the Arow(X, y) are the eigenvalues of the 2 m by 2 m matrix 

JQ=CeP L ~I {GI+(1-k '  c~ sinOsaf} (2.16) 
j = l  

where a}, @ are the usual Pauli matrices, direct products of m two-by-two 
matrices: 

1 
o - j = e | 1 7 4 1 7 4  0 

x (0 
% = e Q e | 1 7 4  1 

0 1 ) e e @  ... | 

10)|174 -.. | 
(2.17) 

e is the identity two-by-two matrices and the nonidentity matrices in 
position j, for j =  1 ..... m. Hence Trow is related to Y-o by a similarity 
transformation: 

t~ow = P~-~ P ~ (2.18) 

Because of the commutation relations, the matrix P can be chosen 
to depend on x, y only via k'. Taking the Hamiltonian limit x, y, #---, 1 
(keeping k' fixed), it follows that 

= PHP -1 (2.19) 
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where 

H =  [2k'Q + (1 +k')(mN--LN+L)] I 

- N  ~ [(1-k' cosOj) o.j-k' sinOjo.7] (2.20) 
j = l  

Since o@ is Hermitian for all real k, its eigenvalues must be real, and 
hence 0~ ..... 0m must be real. Thus, H is also Hermitian, and P can be 
chosen unitary. 

Note that both ~ and H are linear in k' (remember that 01 ..... Om are 
independent of k'). We want to assert that P must be independent of k'. 
Certainly this is the most obvious way of ensuring that (2.19) is satisfied for 
all k', and it was a basic and consistent feature of our numerical calcula- 
tions (see Appendix B). We do not yet have a proof, but shall assume that 
it is so. 

2.3. Ground States of ~o and H o 

From (2.5) and (2.6), and the definitions in ref. 3 of Zj, -~0 is a 
diagonal matrix whose diagonal entry corresponding to the row spin-state 
o. = {o'1 ,..., O.L} is 

f ( o . 1  - -  0"2) + f ( o . 2  - -  0"3) -'}- " ' "  + f ( O . L  --  O.1 ) 

where 
N - - I  

f ( o . ) = - 2  ~ o)"J/(1-co ")=l-N+2mod(j ,N) (2.21 
n = l  

mod(j, N) is the value o f j  modulo N: 0 ~< mod(j,  N) ~< N -  1. 
It follows that the lowest eigenvalue (ground state) of ~o is 

-L(N-1) ,  the corresponding eigenvectors having nonzero elements only 
for the row spin states a l=o.2 . . . . .  o.L- These are the vectors 
Uo ..... "UN l, or (taking independent linear combinations) Vo ..... VN-1. In 
fact, vQ is the unique ground-state eigenvector of ~o in the subspace VQ. 

Similarly, taking Ho to be the U-independent component of H, we see 
at once from (2.20) and (2.17) that this is also diagonal, with unique lowest 
eigenvalue - L ( N -  1) [in agreement with the fact that H o is related to ~o 
by the similarity transformation (2.19)]. The corresponding ground-state 
eigenvector is 

(a direct product of m vectors, each two-dimensional). 

(2.22) 
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Since H is related to ..~ (the restriction of .~  to the subspace VQ) by 
the similarity transformation (2.19), it follows that when k '= O, ~ must be 
correspondingly related to V s. In fact 

= P-~6Q (2.23) 

De is the coordinate vector of vQ with respect to the orthogonal basis of 
VQ. 

Note that 4, VQ, the basis of VQ, and hence 6o, are independent of 
k'. If, as we assume, P is also independent ofk ' ,  then (2.23) is true not only 
for k'= O, but for all values of k'. We shall use this relation in the next 
section. 

3. PARTIT ION FUNCTION 

Using (2.7), we find the partition function Za of the model on the 
lattice of Fig. 1, 

Za--~-U+a[Trow(X, y ) ] M u  0 (3.1) 

(For the moment we consider a homogeneous model, where x, y, k' are the 
same for all edges.) From (2.8) it follows that 

N 1 
Z a = N  i ~ co-Q,2Q (3.2) 

Q=0 

where 2 e, the Fourier transform of Z , ,  is 

N--I 
2 0 =  NI/2v + r~,- , + QLlrow(X ' .},)] M U0 = 2 vQ[Trow(X, y)]M vQ. (3.3) 

Q'=o 

The vector [Trow(X, y)]M VQ, lies in VQ. All such vectors are eigen- 
vectors of the spin translation operator R (that increases all spins by one, 
modulo N), with eigenvalue o) Q. Hence this vector is orthogonal to v e 
unless Q ' =  Q, so 

ZQ = v~[-Xrow(X, y)]M VQ (3.4) 

We can replace Trow(X, y) and vQ by their 2m-dimensional repre- 
sentatives Trow(X, y) and ve with respect to an orthogonal basis of V e. 
Making the similarity transformation (2.18), using our result (2.23), it 
follows that 

2Q = ~tJ-~ (3.5) 
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The matrix Yo is given by (2.16), { by (2.22). The rhs of (3.5) therefore 
factors into a product of m terms, each involving only two-dimensional 
vectors and matrices. Define 

N(1 - x  -1) 
g-- l - - x -  N (3.6) 

1 - x  m(G+l - , k ' cosO -k 's inO ~ (3.7) 
B(x, y, O) 2k' - k sin 0 G - 1 + k cos 0 /  

D(cosO)=(1, O) B(x,y ,O)M(;)  (3.8) 

[remember from (2.4) that k' is a function of x and y].  Then (3.5) yields, 
after using the definitions of p and Co, 

ZQ = gLMx-QMD(cos 01) D(COS 02)'"- D(cos Om) (3.9) 

We can evaluate the matrix B to the power M in (3.8). Let A(c) be the 
function 

A(c) = (1 + k '2 - 2k'c) 1/2 (3.10) 

Then 

D(c)= (1 - x - N )  ~ {[G + ~J(c)] M [~(c) + 1 - k ' e ]  

+ [a-A(c ) ]  g [A(c)--1  +k'c]}/[ZM+lk'gA(c)] (3.11) 

The expression (3.9) is thus an explicit and tractable expression for 
20 ,  the Fourier transform of the partition function Z ,  of the finite lattice 
of Fig. 1. It gives Eq. (55) of ref. 6. 

3.1. An A l te rna t i ve  Form 

The lattice has L columns and M rows. We have used the row-to-row 
transfer matrix to obtain (3.9). For  that reason, M enters only as an 
explicit exponent in (3.9) and (3.11), arising from the product of the M 
transfer matrices. On the other hand, L enters implicitly and at a more 
basic level via the definitions (2.11)-(2.13) of 01,..., Ore. 

We can transform the result so as to interchange these roles of L and 
M. The rhs of (3.11) is an even polynomial in A(c), so from (3.10), D(c) 
is a polynomial of degree 

r = integer part of [ (M + 1)/2] (3.12) 
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Let c~ ..... c r be the zeros of D(c). Then ~ a constant ,/such that 

D(c) =_ 7(q  - c)(c2 - c ) . . .  (Cr -- C) (3.13) 

Substituting this into (3.9), we get 

r 
~Q = gLM x QM~m ~I (21 (COS 0)-- Ci) (3.14) 

i=1 j = l  

This is a "double product" expression for the Fourier transform of the 
partition function, rather like the Pfaffian results for the Ising model 
[Eq. (2.23), p. 85 of ref. 13; see also ref. 14]. 

From (3.11), 

D ( 1 ) = x  MN D ( - 1 ) =  1 (3.15) 

Taking ratios and using (3.13), we obtain 

]2I ( G - l ) / ( c i +  1 ) = D ( 1 ) / D ( - 1 ) = x  MJv 

We define 

#,= [ ( q -  1)/(cz+ 1)] I/N 

Then from (3.16) we can choose the Nth roots so that 

(3.16) 

(3.17) 

(3.19) 

Remembering that N N Z 1 . . . . .  Z m are the zeros of the polynomial P(z), the 
jp roduct  is P ( ~ ) / P ( 1 ) .  Using (2.11) and (3.18), it follows that 

Z o = g  TM I]  N - L  2 (~ ~;~- c 
,= ,  ~=o L~i--TL-~J (3.20) 

Together with (3.2), this is the result (60) quoted in ref. 6. 
To within simple normalization factors, 2 o is the resultant (w of 

ref. 15) of the polynomials P(u) and (1 - u) r D[(1 + u)/(1 + u)], of degrees 
m and r, respectively. 

Using (2.13) and these results, we can now write (3.14) as 

ZQ=gLMx-QM ~1 FI (gN-~ z))f 
i= #=l 1--zN 

~1~2. . -~ ,=x M (3.18) 
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4. E I G E N V A L U E S  OF T~oj 

Expanding the product in (3.20), we can write the rhs as a multiple 
sum over nl ..... nr, Q entering only via a factor ~o Q("~+ " +~). Using (3.2), 
if follows that 

Z,----gLM~ (21,n~22,~2. . .2  .... )L (4.1) 

where 

2 , , , ,=N ' ( 1 - ~ ) / ( 1 - ~ , o )  -n) (4.2) 

and the sum is over all integers nl ..... n~ such that 0 ~< ni < N and 

n l + n 2 +  ... + n r = a ,  m o d N  (4.3) 

Let n = {nl ..... n~} be the set of all such integers, and define 

A. = gM21,nt22,,2 . . .  )~ .... (4.4) 

Then (4.1) can be written quite simply as 

Z = Z (A.) L (4.5) 
rl 

and A. is independent of L. 
Let Tool(a) be the column-to-column transfer matrix of this model. It 

is independent of L, of dimension N r 1, and because of the periodic 
boundary condition linking column L to column 1, 

Z~ = Tracel-Tcol(a)] c (4.6) 

Comparing (4.5) and (4.6), it is obvious that the only way they can 
both be true for all positive integers L is for the A, to be the eigenvalues 

of Tooi(a). 
It is helpful to define an Nr-by-N r matrix ~o l  which is block-diagonal, 

its N diagonal blocks being Tcol(0),... , Too~(N- 1). This can be thought of 
as the column-to-column transfer matrix when the spins in the bottom row 
of Fig. ! are fixed to be equal, without assigning their value. The eigen- 
values of this matrix are given by (4.4) for all values 0 ..... N - 1  of 
nl, n2,..., n~, without the restriction (4.3). Thus, the diagonal form of ~ol  is 
a direct product of r diagonal matrices, each N by N: 

~ccol = gM 211 . @ " ' '  @ 2rl . (4.7) 
�9 . �9 . 

IL1,N l /Lr, N 1 
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This is a fascinating simplification and is very reminiscent of the Ising 
and free-fermion models, whose transfer matrices involve direct products of 
two-by-two matrices. (We shall return to this point toward the end of 
Section 7.) Note that here we are considering the full eigenvalue spectrum 
of .Y~o~ : it is also true that the set of eigenvalues (2.15) of Tro w is that of a 
direct product of m matrices (each two-by-two), but these are the eigen- 
values only for the subspace V o. 

5. D U A L I T Y  

Let Ws(n), Wf(n) be the Fourier transforms of W(n), W(n), defined 
slightly asymmetrically by 

N - I  
Wr(j)=U-'/~ y~ ~o J'W(n) 

n--O 
N--1 

VVf(J) = N - 1 / 2  2 ~J'~VV(n) 
n=O 

(5.1) 

From (2.1) we may note that 

/*(1-yco ~) l~(n)= ( eo -  xco ~) f f / ( n - 1 )  (5.2) 

Multiplying this equation by N 1/2co J" and summing over n, we find 

" p - coJ 
~/[/'f(n)~- W f ( 0 )  jI~I I - ~ - ~ - - - ~ j  (5.3a) 

and similarly 

Wy(n)= w,40) leI ~ouy-xoo' 
j=  1 # - cU (5.3b) 

Comparing these equations with (2.1), we see that if we replace x, y, # 
by their dual values 

xu = x/(#y) ,  Yd = # ', i~ d = y - l (5.4) 

then (2.2) remains satisfied, while (to within n-independent normalization 
factors) W(n) is interchanged with lYVf(n), and ff/(n) with Wf(n). 

This is a duality transformation. From (2.4) and (2.9), the duals of k' 
and G are 

k'~ = 1/k', G~= a/k' (5.5) 
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Thus this transformation interchanges the high-temperature disordered 
phase (k' > 1 ) with the low-temperature ordered phase (k' < 1). 

We can obtain its effect on the partition function Z (including bound- 
ary conditions) by using standard graphical methods (w of ref. 16). Let 
Z~ d) be the value of Z~ as defined by (2.1)-(2.3), after replacing x, y, lA by 
Xd, Yd, lad �9 The effect of this is to replace W ( n )  by H / f ( n ) / W f ( O ) ,  W ( n )  by 
Wi(n)/WAO), s o  

z ( d )  --LM (f) =~2 Z s , (5.6) 

where 

f2 = Wf(O)/Wf(O) (5.7) 

and Z(~ f )  is defined by (2.3), but with E being the function Wf(Ws) on 
SW-NE (SE-NW) edges. 

From (5.1) 

N 1 N - - I  

Z Wf(j) V V u ( j ) =  ~ W ( n )  lY(n) (5.8) 
/ = 0  n = 0  

while from (2.1), (5.3), and (5.7), we have the simple relations 

x - I  
W(n) 7 r  ., 

w s (j) m z (j) = o 
x - Ixy 

x -  #y~o j 

(5.9) 

for n, j =  0 ..... N - 1 .  Substituting these expressions into (5.8), we get 

x - 1 x N - -  [~NyN 

ff~ x N  ( 5 , 1 0 )  
x - # y  - 1 

Let 5 ~ be the lattice of Fig. 1, and 2~D its dual, as shown in Fig. 2. We 
now formulate Z~ r) in terms of "edge spins" on ~,~ as follows. With each 
edge 2 of LP, with endspins b, c, (b below c), associate an "edgespin" 
e~. = b -  c (modulo N) on the corresponding edge of LP D. 

Then these edgespins e~. satisfy the constraints 

el + e 4 - - e 2 - / - e 3 ,  mod N (5.11a) 

at each internal vertex of ~~ where e I . . . . .  e4 are arranged as in Fig. 2. At 
the boundary vertices (of valence 2), with adjacent edge spins el, e2, this 
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2 4 2L - 2  2L 

M + I  

3 

2 

Fig. 2. The dual lattice s D, showing a typical arrangement  of edge spins e 1,..., e4 around a 
vertex j, The broken edges link column 2L to column 1, and form a vertical seam through 50o. 

constraint simplifies to e~ = e2. Also, for a vertical seam of M edges (e.g., 
the edges denoted by broken lines in Fig. 2), we must have 

e 1 + e 2 +  - . .  + e M =  - - a ,  mod N (5.11b) 

el ..... e v  are the spins on those edges. 
Because of (5.11a), if (5.11b) is true for any seam, then it is true for 

all. The top and bottom edges of 5e D each correspond to two edges of 5~, 
but theen site-spin configurations on 5 ~ and allowed edge-spin configura- 
tions on LaD, so 

Z~ F' = ~ ~I E(e,) (5.12) 
e i 

the sum being over all allowed edgespin configurations e =  {el, e2 .... } on 
5~D, the product being over all edges i of ~D, E(e,) being ffes(ei) or Wf(e,). 

First consider the constraint (5.11b). This is most easily handled by 
introducing the Fourier transform 2 ~  ) of Z J  I analogously to (3.2). Then, 

N--I  

= ( 5 . 1 3 )  
a = 0  

If we use (5.11b) to replace Qa by - Q ( e l  + ... + em), then the effect of the 
sum over a is to remove the constraint (5.11b), giving 

2 ~ ) =  2 60 Q(el+ "'" +era) ~ E ( g , )  (5.14) 
e i 

Here the sum and product have the same meaning as in (5.12), except that 
the constraint (5.11b) is removed. 

822/57/1-2-2 
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The next step is to expand each of the vertex and seam Kronecker 
deltas into a Fourier series, e.g., 

(~(el + e 4 - e 2 - e 3 ) = N  1 
N 1 
2 o')b(e2+e3--el e4) ( 5 . 1 5 )  

b=O 

Doing this, and expanding, we find that the summand in (5.14) itself 
becomes a sum of N LM+L terms involving bl,..., bLM+r, each b~ corre- 
sponding to a vertex of 5~ For  each such term, the outer e~ sum in (5.14) 
is trivial. For  instance, for a SW-NE edge 2 not in the vertical seam, the 
corresponding e). enters the summand only in a factor 

co(b- c)e~.Wr( e z) (5.16) 

b (c) being the b i associated with the vertex below (above) 2. Summing this 
over ex gives, from (5.1), N1/2W(b-c) .  Similarly, each SE-NW edge (not 
on the seam) gives a contribution N1/Zl~/(b - c). 

For the edges on the seam, there is an extra factor ea-Qe~, causing the 
contributions to be modified to N1/ZIZv'(b- c + Q). 

We still have to sum over the bi. There are L M +  L such bi, one for 
each vertex of 5ez~. We can obviously regard them as new "spins": they take 
the values 0,..., N - 1 .  Each vertex gives a factor N 1, while each of the 
2 L M  edges gives a factor N ~/2. Altogether, it follows that 

2(~f)=N-L Z [I E(bi-bj) (5.17) 
b (i,j) 

where the sum is over all values of all the spins b = {b~, b 2 .... }, the product 
is over all edges ( i , j )  of ~D,E(n)  is W(n) on SW-NE edges, while on 
SE-NW it is if(n). For  edges on the seam, W(n) and lie(n) are to be 
replaced by W(n - Q), ff'(n + Q), respectively. 

From Fig. 2, YD has 2L individual columns, of alternating type. If we 
take the seam to be between columns 2L and 1, the seam modification 
is equivalent to using "Q-cyclic" boundary conditions, where the spins 
cr2L+l in column 2 L + 1  (the one to the right of L) are related to the 
corresponding spins ~1 in column 1 (the far left column) by 

o2L + 1 = ol + Q (5.18) 

The sum in (5.17) is thus very like our original partition function. To 
be precise, it is the partition function 7 free defined by (2.1)-(2.3), but with ~ Q  

free boundary conditions on the top and bottom rows, and with the 
Q-cyclic boundary condition (5.18) linking the last and first columns. 



Chiral Potts Model 17 

Using (3.2) and (5.6), it follows that  ZQ, with x, y, # replaced by 
xa, Yd,/za, is 

Z ~  ) = N L(2 --LMTfree~Q (5.19) 

Thus  we can go f rom the fixed-spin top and b o t t o m  bounda ry  condi- 
t ions of this paper  to free-spin bounda ry  condit ions by applying this 
duality t ransformat ion.  We remark  in Section 7 that  we can also do this by 
" turning off" the interact ions in the top and b o t t o m  rows of edges, so we 
have a useful consistency check on our  results. We shall also use the duali ty 
t rans format ion  to obt in the vertical interracial tension. 

6. L A R G E - L A T T I C E  L I M I T  

Here  we take k' ,  x, y to be real, k '  > 0, 1 < x < y < oo. For  N = 2 this 
is the ferromagnet ic  case of the Ising model.  The system is ferromagnet i -  
cally ordered if k ' <  1, disordered if k ' <  1, so we can think of k '  as a 
" tempera ture ."  The  variable G is positive, 

G > l + k '  (6.1) 

and we shall use the quant i ty  

G - { 1 - k ' l  
w = (6.2) 

G + l l - k ' l  

Provided M is sufficiently large, the zeros Cl ..... cr of the po lynomia l  
D(c) are real. Fo r  0 < k '  < 1 they all lie in 

1 ,  k , - 1 )  5(k + < c j<  oc (6.3) 

while for k '  > 1 all but  one of them lie in this range, the exceptional  zero 
being (for M large) 

Cl = l + 2 ( k ' -  1) 2 wM/k '2 Jr smaller terms (6,4) 

Thus,  cl tends to 1 as M ~  ~ .  
Using (3.15), it follows that  D(c) is real and positive for - 1  ~<c<~ 1, 

so from (3.9) and (3.2), 2 o and Z o are positive real, even though the 
weight functions W(n), ffV(n) are complex. We remarked  on this in 
Section 2. 

In (2.11) let 

z = e u (6.5) 
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and consider the function 

N-- 1 f 1 - -  e N u  L 
9F(u)=p(eU~')=e Q~' • co ~ . . . . .  ; (6.6) 

~=0 ~ l - - c o  ~e~J 

This has simple zeros at Ux ..... urn, where z j=exp(u i ) ,  and we can choose 
ul ..... u m all to have imaginary part  ~c/N. Thus, they lie on the line AB in 
Fig. 3. F r o m  (2.13), we can write (3.9) exactly as 

l n 2 e = L m l n g - Q m l n x + l  ~ lnD(cosO)[Tt'(u)/gJ(u)]du (6.7) 
2zi c 

where 0, u are related by 

cos 0 = (1 + eN")/(1 --e N") (6.8) 

and C is the contour  C1 shown in Fig. 3. It just  encloses the line AB. 
The function In D(cos  0) is analytic on AB, and it follows that if we 

ignore (for M large) terms of relative order w M, then we can take 

D(c) = (1 - x - N )  M [G + A(c)] M [A(c) + 1 - k'c]/[2 M+ lk'MA(c)] (6.9) 

6.1. The  Case k ' < l  

First consider the case k '  < 1. The integrand of (6.7) is then a periodic 
function of u, of period 2zi/N. It  is analytic in the domain  
- z / N <  Im u < 2z/N, apart  from simple zeros on AB and a branch cut 

Fig. 3. 

A I . . . . . . . . . . .  ~-/N. 

C1 < 

. . . . . . . . . . . . . . . .  B 

C 2  

" I) < 

-Bn i o I 0 u-plane 

< 
. . . . . . . . . . .  _ - . . . . . . . . . . . . . . . .  

/ 

C3 

The contours C1, C2, C 3 in the complex u plane. C1 and C 3 extend to infinity to the 
left and right. 
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[-where A(cos 0) is pure imaginary] on the negative real axis, along the 
segment 

where 

In p < u < 0  (6.10) 

2/N 

(6.11) 
P =  l + k l  

From (2.9) we can verify that D ( - - 1 ) = I ,  from which it follows 
that the integrand of (6.7) tends to zero as R e ( u ) ~  +oc. Also, 
~ ' ( u ) / ~ ( u ) ~ e  N" as u ~ - c~ ,  and hence-the integrand also tends to zero 
as Re(u) --, - ~ .  

It,follows that C1 and C2 in Fig. 3 are equivalent contours, so we can 
take C in (6.7) to be C2, where C2 goes clockwise around the branch cut. 

Now consider ~(u) on C2. For  L large it is dominated by the n = 0 
term in (6.6), the other terms being at most of relative order 
coQ'[(1 - p ) / ( 1 -  p c o - ' ) ]  c. Ignoring these terms, we can take 

gt(u) = e - e " [ ( 1  _ eN")/(1 -- e~,)] L 

Finally, we expand C = C2 to become the closed contour C3, enclosing 
the rectangle - ~z/N < Im u < ~z/N. Taking account of the contribution from 
Re u = - ~ ,  (6.7) gives, for 0 < k' < 1, 

In 2Q = - L M f  - Q M h  - 4 L f  , (6.12) 

where 

1 f,:(1 N 1) [ G +  A(cos0) ]  
- f =  ln(Np) + - In &b 

7r ~o 2k' 

1 G + j l - k ' [  
h = - - l n  (6.13) 

N G +  1 - k '  

l f~( l  N -1 ) 
ln [ 1 - k '  c~ O + A(c~  0) d~b 

Here ~b and 0 are related by 

0 V sin ~b q x/2 
tan ~ = Lsin(~ +-~/N)J ! 

and 0 increases from 0 to ~ as ~b increases from 0 to ~(1 - N--l). 

(6.14) 
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6.2. The  Case k' > 1 

This case is more complicated, as the factor d(c)+ 1-k'c vanishes 
when Re u ~ -Go. The integrand of (6.7) has an extra branch cut from 
u = - o e  to u = In p. We can integrate around this as necessary, using the 
fact that across this cut In D(cos 0) merely jumps by 27ri (from above to 
below). One also has to be careful with convergence when u ~ -o e .  The 
end result is that In ZQ is still given by (6.12)-(6.14), except that there is 
an additional contribution 

2Q(k) in P(O) - ~ -  in (6.15) 

to lnZQ. Here P(0) is the value of (2.11) when z - . 0 :  equal to 
NL!/[Q! ( L -  Q)!]. 

6.3. Par t i t ion  Funct ion  Z a 

We can now start to calculate the partition function Za, using (3.2). 
For  k' < 1, h is zero and the rhs of (5.12) is independent of Q. Thus, we get 
at this stage 

Za = (~a, oe-LMf 4Lf, (6.16) 

For k' > 1, h > 0 and the summand in (3.2) is dominated (for M large) by 
the Q = 0 term. The Q = 1 term gives an exponentially small correction 

( k ' -  l']2/N e Mh} (6.17) Za=e LMf-4LA{1...bL(.o a\  k' } 

Of course, Z 1 , . . . ,  Z N _  1 are not precisely zero for k' < 1, merely much 
smaller than Z0. We can determine their ratios to Zo from (4.1)-(4.5). For  
L large, the sums in (4.1) and (4.5) are dominated by the largest eigenvalue 
A., where nl ..... nr must satisfy the restriction (4.3). 

For  a = 0 the largest eigenvalue occurs when nx ..... nr are zero (because 
[2i, n[ < 12i,01 for n =  1,..., N - 1 ) .  For  a r  at least one of nl ..... nr must be 
nonzero, and the maximum eigenvalue is achieved when the corresponding 
~i is as small as possible. For  k' < 1 and M large, this is when the corre- 
sponding ci, related to ~i by (3.17), is at the lower end of the range (6.3), 
i.e., c i=  ( k ' +  1/k')/2 and ~i= p, using (6.11). Thus, 

Z .  /~ { [ I  1 - p  ~L (6.18) 
Z---o --rM 1 - pco-~J 
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Here zM is a factor arising from the number of choices of the ~ that 
are close to p: we expect it to be proportional to M for M large. The 
product is over a set of nonzero integers n whose sum is a (modulo N): this 
set is chosen to maximize the modulus of the product in (6.18). The integer 
l~ is the number of terms in the set, so 10 = 0 and for a = 1,..., N -  1 we must 
have 0 < l~< rain(a, N - a ) .  Often (but not always) there is just one term 
in the product, in which case l~ = 1, n =a ,  and (for k ' <  1 and a r  

1 - p  )L 
- e LMI 4LSs (6.19) Z ~ = v ~  1 p ~ - ~  

The situation is different for k' > 1. Then the smallest ~i corresponds to 
the exceptional c, (labeled c~) given by (6.4). This means that {1 is 
exponentially small for M large and (to relative order {~) 

Z a / Z  0 = 1 -Jr t ~ r ( ( D  =a  __ 1) 

= 1 +L(~o ~ -  1 ) [ ( k ' -  !) 2 wM/k'2] I/N (6.20) 

in agreement with (6.17). 

6.4. Correlation Lengths and Interfacial Tensions 

There are other exponentially small corrections to In Za. For k' < 1 we 
do not have the correction given by (6.20), but we do have corrections to 
(3.9) arising from including the second component of D(c) in (3.11): the 
component proportional to [ G - A ( c ) ]  M. These are largest when cos 0j is 
close to - 1 ,  giving corrections proportional to Lw M. 

Other corrections, exponentially small in L, come from including the 
next largest eigenvalues in the sum in (4.5). Because of the constraint (4.3), 
these are obtained by changing two of nl ..... nr (say replacing nl, n2 by 
nx + 1, n 2 -  1). To minimize the effect of this change, the corresponding two 
~i ({1 and ~2) should be the smallest possible. For k ' <  1 this means that 
both are effectively equal to p. For k' > 1 one is equal to p, while the other 
is the exceptional ~i (namely ~1), which is effectively zero. 

For a :~ 0 and k' < 1 the maximum eigenvalue A, is but one of a band, 
and the question of excitations (next lower eigenvalues) is complicated. If 
we ignore this case, the maximum eigenvalue has nl ..... nr = a, 0,..., 0, while 
the next maximum has nl,..., nr=a+_ 1, ~ 1, 0,..., 0. If we define 

v_+ = (1 -- p)/(1 - pco -+1) (6.21) 
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then for k' < 1 the correction terms are proportional to M2(v+ v )L, while 
for k ' >  1 they are proportional to M(v+)L  and M(v  )L. Altogether, we get 

In Z ,  = - L M f -  2L(2fs + s,) + l~ In %t 

+ O(Le M/r + O(M~(~') e 2L/r (6.22) 

where f and f~ are given by (6.13), the integer l~ is defined above, rM is 
proportional to M (for M large), and for k' < 1 

1 1 - p  
s~ = - ~ In 1 - p o -  ~' e(k') = 2 

e -1/r . . . . .  w - G - I I - k ' l  (6.23a) 
G + l l - k ' l  

C--1/r )1/2 

while for k' > 1 

G = l n r M = 0 ,  e (k ' )=  1 

e-1/~-v~ ~ J  (6.23b) 

e - 1/r176 = (v+)1/2 

This f is the bulk free energy per site, fs is the surface free energy per 
unit length, due to the fixed-spin top and bottom boundary conditions. 
(We can use the duality mapping x, y,/~ --* x d, Yd,/~a of Section 5 to trans- 
form fs to the surface free energy due to free boundaries.) We take the unit 
length to be a single row or column spacing, so in these units the lattice 
is 2L wide, M high. 

The quantity ~hor is the horizontal correlation length (see Section 7.10 
of ref. 10); sa is the tension energy per unit length of a horizontal interface 
between ferromagnetically ordered domains in phases 0 and a. If the 
product in (6.18) contains more than one term, then Sa should be replaced 
by the corresponding sum ~ sn, where ~ n = a: this will mean that it is 
energetically favorable for other phases to intervene between 0 and a, i.e., 
for "wetting ''(11) to occur. This happens when N is sufficiently large. 

When xN= 1 + k' and y = oo the transfer matrix Tro w is Hermitian. In 
ref. 4 it is asserted that in this case ~vert is the vertical correlation length, 
implying the spin-spin correlation length. This is true for N =  2, but is not 
necessarily true for larger N: we have not evaluated all the eigenvalues of 
Trow (only those with eigenvectors in Vo ..... VN_ 1), nor can we argue that 
the vertical spin-spin correlation length should depend only on k' and N 
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(not on x). We no longer have the "difference property, ''Ill so vertical 
correlations can depend on the intervening horizontal rapidities, i.e., on x. 

Even so, ~vert does measure the length over which the top and bottom 
surfaces are correlated, so in this sense we can still think of if as a correla- 
tion length. 

We can also obtain a measure of the tension of a vertical interface by 
using (6.12), together with the duality transformation (5.19). This shows 
that there is a Q-dependent contribution - M s '  e to In 7free [coming from ~ Q  

the - Q M h  term in (6.12)], where 

and Q = 0 ,  1,..., N -  1. 

Q in G +  I1 - k '  I (6.24) sb=7; C+k'-I 

Since the effect of the Q-cyclic boundary condition (5.18) is to force at 
least one vertical interface separating phases that differ by Q, it seems 
plausible to identify sb with the interfacial tension (per unit length) 
between the domains. For k' >0,  (6.24) correctly gives sb =0,  while for 
k ' < l ,  

Qln  w Q 
s ~  --  N N~ver t (6.25) 

This result, like ~vert, depends on x, so it cannot (at least for N =  2) 
be the usual vertical interfacial tension. Presumably the difference is related 
to the use of free (rather than cyclic) boundary conditions at the top and 
bottom of the lattice. 

]?or the Hermitian case ( y =  oo, xN= G =  1 +k ' ) ,  with N = 2 ,  these 
results simplify to 

~wrt=~hor-----(2Sa) 1=(2S'1) 1 = - - l / I n k '  for k ' < l  (6.26) 

~vert = ~hor = 2/ln k' for k' > 1 

These agree with Eqs. (7.10.18), (7.10.43), and (7.11.4) of ref. 10, provided 
we note that k therein is our k', and s/kB T therein is our 2sa or 2s'1 (this 
2 comes from a difference in the choice of length scale). 

6.5. Critical Exponents 

Let fsing be the singular part of the free energy at the critical point 
k ' =  1. Similarly, let (f,)sing be the singular part of the surface free energy 
f , .  Then near k ' =  1 we expect 
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f~i.s oc I k ' -  II 2-~  , (f~)si.g oc I k ' -  11 z-=,  

sa oc (1 - k ' )  uh~ s~oc (1 - k') ~ .... (6.27) 

r ~z I k ' -  II -vh~ , ~ r t  ~ I k ' -  iI . . . . .  

where ~ ..... Vw~t are critical exponents. We can find that this is the case, the 
exponents having the values given in (1.1). 

In particular, as k' ~ 1 from below, to leading order 

~vert = G/J2(1 - k ' ) ]  
(6.28) 

eho~ = I-2/(1 -- k')]2/u/[2 sin2(Tz/N)] 

Eliminating 1 -  k' between these two expressions, we see that the limit 

F =  lim ~U/2/,~ (6.29a) h o r / ~  vert 
k ' ~ l -  

exists, with value 

F = 4G - i 1-2 sin 2(~/N)] - N/2 (6.29b) 

(If we take the limit k ' ~  1 +, we get a slightly different expression, but 
still inversely proportional to G.) 

6.6. Finite-Size Correct ions at Cri t ical i ty  

In the previous subsection we took the results for k' # 1, evaluated in 
the large L, M limits, and then let k' ~ 1. Now let us reverse the order of 
limits and first set k' = 1, then take M and then L (or L and then M) large. 

First taking M large, we can repeat the derivation of (6.12) above, but 
now the approximation (valid for large L) of replacing (6.6) by (6.11) 
means that for finite L we should add to (6.12) a correction term 

~---~ii~clnD(cosO) dln 1 + 2  '= 1--og_-----~e,j j (6.30) 

[We have taken Q = 0 ,  as in the limit M ~ o o  the sum in (3.2) is 
dominated by the contribution from Q = 0: this gives the largest relevant 
eigenvalue of Trow.] 

Here D(c) is given by the truncated result (6.9), keeping only the 
terms exponential in M, and C is the contour C2, which now surrounds the 
negative real axis in the u plane. 

For L large, the integrand in (6.30) is dominated by small values of 
z=e", in fact by values of order L -~. Then, from (3.10) and (6.8), 

z J ( c o s  0 )  ,~ g2ie Nu/z (6.3I) 
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the upper (lower) sign applying above (below) the real axis. Hence (6.30) 
becomes 

27zi ~ -+ 2izS/2J \ 1 -- co-"zJ J 

the integral being from u = - ~ to u = 0, i.e., from z = 0 to z = 1. 
Changing variables from u through z to v, where 

(6.32) 

z = v/L (6.33) 

and then letting L -~ ~ ,  we find that (6.32) in turn becomes 

2MC N/( rcGL u/2 ) (6.34) 

where 

f0  - n  C N = - -  V N/2 din  1 + e(O~ 1/~ 
n = l  

N I ~ 2)/2 = 2 a o  dvv (u- in 1+  ~ e (~-~ (6.35) 
n = l  

Now suppose we first take L large [having already set k ' =  1 in the 
derivation of (6.12)]. For  M finite, the working goes through as before, 
except that we get an extra contribution to In Zo of 

{ Va- (cosotl   (cosot- +coso  
~o In 1 + [ ~ ~  0)J d(cos 0 ) + l ~ o s 0 J  d~b (6.36) 

This is proportional to L. As before, 0 and ~b are related by (6.14), and now 
A(cos 0) = 2 sin(0/2). 

If we now let M become large, the integral (6.36) is dominated by its 
values for small 0, in fact for 0 ~ M -  l. Setting here 0 = Gv/(2M), we obtain 
that (6.36) becomes 

where 

( 2L~(  G__G_~2/N 7z (6.37) 
N ~ J k 4 M J  du sin 

dN = V(2 -- N)/N ln(1 + e ~) dv (6.38) 

Both the corrections (6.34) and (6.37) involve L and M only via the 
ratio M/L u/2. Obviously this model is intrinsically anisotropic, having 
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different critical exponents in the horizontal and vertical directions. To 
compensate for this, for k ' r  1 it would be natural to measure M in 
units of ~wrt, 2L in units of ~ho~. Doing this, then taking the limit k' ~ 1, 
suggests that instead of M/L N/2 we should express the results in terms of 
FM/(2L) N/2. We therefore write the above results in the form 

1 
- lim In Z~ = - f L  + A (NPer)F/(2L) N/2 (6.39a) 

m ~ o o m  

1 In Za = ~ f M  + 2f, + A ~• 2IN -2im 
where 

7~tN CN d(uPer)=- 2 s i n ~  2~ 

A (fix) _ du 
N 2NrE sin(To/N) 

(6.39b) 

(6.40) 

The first result, (6.39a), is the free energy per unit height of the 
infinitely high lattice, with width 2L and periodic boundary conditions 
from side to side. The second, (6.39b), is for the infinitely wide lattice, with 
height M and fixed-spin boundary conditions. For the Ising case, when 
N--2,  we get A(f~r)= -re/12 and A(~X)-2 - -  -rr/48, so the results (6.39) agree 
with the predictions of conformal invariance (9'1~ with central charge 
c =  1/2. For N >  2 they differ from these predictions, notably in that the 
large-L, M corrections are no longer just proportional to L l, M-1. This 
is presumably due to the intrinsic anisotropy of the model. 

7. R O W - I N H O M O G E N E O U S  M O D E L  

Because of the star-triangle relation,(1) transfer matrices Trow with the 
same value of k, but different values of x, commute. This was an essential 
step in our derivation (4) of the eigenvalues of Trow in the spaces 
Vo ..... VN 1. It makes it easy to generalize the above results to a model 
where x has different values xl ..... x~  in the M rows: all one has to do is 
replace Mth powers by the corresponding product; e.g., x -M in (3.18) 
becomes (XlX2...XM) 1, while [G+A(c ) ]  M in (3.11) becomes 
I - I~ l  [Gi+A(c)].  This is because the eigenvectors of Trow depend on k', 
but not on x. 

However, we can do better than this. In Section 2 we assumed (we 
hope plausibly and correctly) that the matrix P is independent of both x 
and k'. Thus, even if k also varies from row to row, with values k'l,..., k~t, 
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one can still simultaneously apply the similarity transformation (2.18) (in 
the space VQ) to transform each transfer matrix to the form (2.16), i.e., to 
a direct product of m matrices, each only two-by-two. 

Thus, the product of the M transfer matrices is also transformed to a 
direct product of two-by-two matrices, each being a product of M matrices 
B(xi, Yi, cos 0j), for i = 1,..., M. 

Here Yi is the value of y for each row, related to xi, kl by (2.4). 
Similarly, G is defined by (2.9) for each row, and takes the values 
G1 ..... GM.  

Replacing Y ~  in (3.5) by the product of the r for each row, we get 
the analogs of (3.8) and (3.9): 

D(cos 0 )=  (1, 0) [ I  B(x,, y~, O) (7.1) 
i = 1  

Z Q = ( g ~ ' " g M )  L ( x l ' ' ' x M )  -QD(cos01)' ' 'D(cosOm) (7.2) 

The two-by-two matrix B(xi, Yi, O) is defined by (3.7), with x, k', G 
replaced by their values xi, k;, Gi for row i. 

We can no longer reduce (7.1) to an explicit form like (3.11), but it is 
possible to use (7.1) directly, and to note that D(c) is still a polynomial of 
degree r, and to verify (3.15). Thus all the equations (3.12) (4.7) remain 
valid, provided only that we replace x M, gM therein by Xl .-. XM, g1 "'" gM" 

7.1. Free Boundary Condit ions 

Such generalizations are not necessarily interesting from a physical 
viewpoint, but they can be useful in examining the equivalences and mathe- 
matical structures of lattice models. They also mean that we can readily 
change from fixed to free boundary conditions on the bottom row, simply 
by taking xl = Yl = o% in which case W(n) = W(n) = 1 between spin rows 
1 and 2, hence there are no intervening interactions. This is equivalent to 
removing row 1 and imposing free boundary conditions on row 2. We can 
similarly remove the top row, in which case Za (for all a) becomes the par- 
tition function of a lattice with free boundary conditions (with M reduced 
by 2). 

We have explicitly verified that the result is the same as that given by 
the duality relation (5.19) for Q =0.  A key step is the similarity relation 
B(xd, Yd, O) = X  1B(x, y, O) X, where X =  (1 - c o s  0) a z -  sin 0 cr x. 

7.2. Relat ion to the Ising Model  

One intriguing point that is brought out particularly clearly in. the 
inhomogeneous case is that (apart from a normalization) the eigenvalue 
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spectrum (4.7) of Tco I depends only on N and f l , ' " ,  fir, or equivalently 
[using (3.17)] on N and the zeros cl , . . . ,  Cr of D(C).  From (7.1) and (3.7), 
we see that c ~ ,..., Cr are determined completely by M ,  G I ,..., G M , k'~ ,..., k '~ .  

They have no other dependence on N, so are the same for general N as for 
the Ising model. We know we can solve the Ising model by Pfaffians or 
Fermian operators, (13'14'17"18} and with our boundary conditions we are 
indeed led to the expression (7.1). This suggests that there should be some 
combinatorial or algebraic method of diagonalizing Too I which closely 
resembles these Ising model methods, having the same underlying equa- 
tions leading to the same ~1,..., fir, but yielding the general-N form of (4.7). 

All the remarks of the next section generalize readily to the row- 
inhomogeneous mod, though for brevity we do not usually exhibit the row 
indices. 

8. INVERSE SOS M O D E L  

Consider the column-to-column transfer matrix T~oi, and for con- 
venience take M to be odd, so M =  2 r -  1. [The case of M even can be 
derived from this by taking X2r -1  = 1, SO that in the top row l~(n)= 6,,o.] 

In this section we shall write aB for the value of the fixed spins in the 
bottom row of the lattice. 

A typical column (or double column) of the lattice is shown in Fig. 4 
for M = 5, r = 3. There are r -  1 free spins on the right (center, left), labeled 
al, . . . ;  a', l(crl,...," at_" ~,'~rl ..... a r - ~ ) .  The transfer matrix Tco~ acts on the 

Fig. 4. 

0 

o i ~ % '  

QB QB 

A typical double column of .L c:, showing the free spins o- 1,,,., 0~'; the fixed spins 
as, 0; and the E, F matrices associated with the edges. 
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N ~- '-dimensional space of vectors qJ with elements O(a~,..., a~_ ,), and has 
elements 

(Tco i )~ '=2  f l  W(r IZV((~j_ ~-~j ') 
a" j = l  

r--I 

• 1 - I  - - ( 8 . 1 )  
j = l  

taking ao = a;  = ae, o" = 0. Here a denotes the set of spins o, ..... a~_ 1; and 
similarly for ~,  . 

Define other N ~- ~-by-N ~- ~ matrices: 

r - - 1  

= ]-I 6( j, 
J='  (8.2) 

r - - 1  

(F,)~,= W(a~-a;) [I 6(aj, aj) 
j = t  

Thus Ee, g+ 1 is diagonal, Fi is not. Similarly, define J~i,i+l, /~i with W 
replaced by if'. Let F / be the transpose of F~. Then for r = 3 we can write 
(8.1) as 

Tool - '  - ,  - _ _ = E23 F 2 E,2 F 1 Eo, Eot FI E,2 F: E:3 (8.3) 

Each of these E or F matrices corresponds to a single edge, as indicated in 
Fig. 4: they are local "edge transfer matrices" that add a single edge to the 
lattice. 

From (4.2), 2~, ~ has a simpler dependence on n than 2i,,, being just 
linear in ~o-'. From (4.7), this suggests that the inverse of ~ol ,  and hence 
Tool, may be in some ways simpler than the original matrix. 

We shall find that this is so. The E, F matrices are invertible, so from 
(8.3) it is easy to invert Too I. In fact, the inverse is simply given by inter- 
changing/Ti, i+ 1 with E -1 and F / w i t h  F/-1. / , / +  i t  

The matrices Ei, g+,, being diagonal, are easily inverted; the matrices 
Fi are not much harder: one uses the Fourier transforms (5.1)-(5.3). This 
gives 

r 

j =  1 ( 8 . 4 )  
r - - I  

(F,71)~,= r(a,-a;) ]-[ 6(aj, aj) 
j=1 
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where X(n)= 1/W(n) and 
N 1 

Y(n) =N-3/2 E coJn/wf(J) (8 .5)  
j = o  

The matrices Ei, i+l 1, F [  1 are given similarly, with W, X, W/, and Y 
replaced by W, X, W/, and Y, and e) j" by e)-J~. 

We thus obtain 
r 

1-I 
a "  j = l  

r 1 

x l] g(a j -  aj') ?(a; - aj') (8.6) 
j = l  

t !  (~1! Summing over al,..., ~-l ,  we get 

r - - 1  

(T~o))=2(a ,  l lX(a ' - l )  l~ U((Tj-I'(75-I'Gj'GJ) (8.7) 
j = l  

where 
N--1 

U(a,b,c,d)= 
s = O  

2(a-s) X(b-s) ?(e-s) Z(d-s) (8.8) 

and a in this section is not necessarily equal to the boundary spin value ae. 
This function U(a, b, c, d) is the weight of a four-pointed star, with 

center spin s and outer spins a, b, c, d (ordered anticlockwise from the 
bottom left). Consider first the case when b=a and note that 
X(n)X(n) = [W(n) W(n)] -1. From (5.9), this simplifies, giving 

1 N - - I  

U(a, a, c, d ) =  ~ (x-co s-a) Y(c-s)  Y(d-s)  (8.9) 
x - 1  s=o 

Using (8.5) and its analog for Y, this gives 

d 1 u ~ c 0 J ( d - c ) {  X C0 c-a ~ 
U(a, a, c, ) = U 2 ( x  - 1) j=o Wf(j) -~r f f / f ( j -  1)1 (8.10) 

We have already used the unexpectedly simple result (5.9) for 
W(n) ff/(n). Now we note from (5.3) and (5.9) that W/(j)g/f( j)  and 
W/(j) f f / / ( j -1)  also simplify dramatically. Substituting the results into 
(8.10) and using (5.7), we obtain 

N l(.oJ(d-c){X(X__kty ~ j)__(Oc a(l__]A(.O j )}  

g(a, a, c, d) = ~ N2(x -  1)(x- #y) f2 
j = 0  

(8.11) 
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The j summation can now be performed: 

( x 2 - c o c - ~ )  ad, c + #(co ~ ~ -  x y ) , ~  ~,~ + ~ 
U(a, a, c, d ) =  (8.12a) 

X ( x  - 1 )(x  - #y)  12 

where 6~,h = 1 if b = a, modulo N; else 6~,b = 0. 
Similarly, one can establish that 

U(a, a - 1, c, d) - l.t(xy - co~ a) (~d,c nk ]22( O')c a __ y 2 )  ~d,c+ l (8.12b) 
N ( x  - 1 )(x - #y)  12 

These results can be combined into one formula, true for a - b  = 0 or 
1 (rood N): 

1 

U(a, b, c, d) = ~ COk("-~)fk(a-- b) gk(d- -  c) (8.13) 
k - - O  

where, using (5.10), 

fo(n) = (x6n, o + ~ y 6 . , l ) / ( x -  1) 

f ~ ( n )  = (6n, o + #6n ,~ ) / ( x -  1) 

go(n) = (x N -  1)(x6n, o - #y6n,1)/[N(x - 1 ) (x  N - # U y N ) ]  

gl(n)  = (x N -  1 ) ( - - 6 n , 0  + #6~,~)/[ N ( x - -  1) (x  N -  #UyX) ] 

(8.14) 

Now note that the aj, aj in (8.7), as in (8.1), satisfy the bottom-row 
boundary condition ao = a ;  = ae. Hence, for the j = 1 term in the product 
in (8.7) we do have U(a, b, c, d) with b =  a. Hence the product vanishes 
unless o-~-o"1 = 0  or 1 (rood N). Thus, the j =  2 term in the product is 
given by (8.13), and vanishes unless 0 " 2 - - 0 " 2 = 0  o r  1. 

Continuing this argument, it follows that the elements of Tcol are given 
by (8.7), with U(a, b, c, d) defined for all integers a, b, e, d by (8.13), (8.14). 
The elements vanish unless o- j -  o-j = 0 or 1 for j = 1,.., r - 1. 

We can regard the integer k in (8.13) as a new "spin," living at the 
center of the star a, b, c, d, and taking only the two values, 0 and 1. Then 

co k~fk(a--b) ,  cokCgx(d--c ) (8.15) 

are the weights of the spin triplets (a, b, k), (d, c, k), respectively. 
From this viewpoint, the rhs of (8.7) is the column-to-column transfer 

matrix of a new model on the lattice of Fig. 5. This lattice has the same 
number L ( M +  1) of sites as the original lattice 5r but now they are 
divided into two sublattices, shown by open circles and filled circles. On 

822/57/1-2-3 
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0 0 0 0 0 

O B O B O B O B El B 

Fig. 5. The lattice on which the "inverse" model is defined. Sites denoted by open (filled) 
circles contain two-valued (N-valued) spins. On the shaded triangles there are three-spin 
interactions given by (8.15). The top edges have weights X, J7 as indicated, where 
x(n) ~(n)= (x-co ~ l) 

the filled circles we still have the original spins, each taking N values 
(except for the spins at the top and bottom, which are still fixed at 0 and 
aB, respectively). On the open circles there are new spins, with values 0 and 
1. Each up-pointing triangle a, b, k (with a, b, k arranged as in Fig. 5) has 
as weight the first expression (8.15); down-pointing triangles d, c, k have 
the second expression as weights. The top edges contribute weights X(c), 
J((d), as indicated. 

Either horizontally adjacent spins on filled circles are equal, or the left 
spin is one greater than the right spin (modulo N). In this respect the 
model is a "solid-on-solid" (SOS) model. 

Let kl ..... kL be a row of k-spins (on open circles), and k'l,..., k)~ the 
row above. From (8.15), incrementing all the intermediate a-spins (on filled 
circles) by j gives an extra factor 

coj(k~+ ... +kL k I . . . .  k2) 

The partition function contains a sum of such increments, which is a 
Kronecker delta. We can therefore restrict the partition function to values 
of k-spins such that kl + -.- + kL is the same (modulo N) for each row of 
the lattice. If we form Zo similarly to (3.2), only terms with 
kl + ... + kL = Q (mod N) contribute. 

Since the column-to-column transfer matrix of this model is just the 
inverse of Too 1, it also has a simple direct-product eigenvalue spectrum, 
given by inverting (4.7). The partition function is, from (4.5) and (4.4), 

( A . ) - C = g  - L M ~  (2,,n~22.n2 " ' 2  .... ) c (8.16) 
n n 
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the summation being over all integers n t,..., nr between 0 and N - 1  that 
satisfy (4.3), i.e., n 1 + .-. + nr = aB (rood N). 

This working generalizes readily to the inhomogeneous case, when x 
and y vary arbitrarily from row to row (but not column to column). As in 
Section 7, the ~i are then given by (3.17), where the c~ are the zeros of the 
function D(c) defined by (7.1). The triangle weight functions fk(n), gk(n) 
are then defined by (8.14), using the values of x, y, /~ appropriate to the 
row in which the triangle lies. 

There are various trivial gauge transformations that can be made; e.g., 
multiplying fk(n), gx(n) by sk, sk 1 (for any function s~) obviously leaves 
(8.13) and Tr 1 unchanged. By using these, we can probably extend these 
results to arbitrary functions fk(n), gk(n), defined for k, n = 0, 1. 

It is interesting to note that these inhomogeneous models are solvable, 
but as k' can vary from row to row, they are not Z-invariant. (~9) 

8.1. Associated Hami l tonian 

The Hamiltonian 2~ in (2.5) is obtained from the transfer matrix Trow 
of the original homogeneous model by perturbing about the case 
x = y = # = 1, when Trow is a simple shift operator: two operations by Trow 
on a vector 0, with elements O(cr I ..... aL), produce a vector with elements 
~(G2,..., ~L, ~,). 

Because of the fixed-spin boundary conditions, Tool is not in this case 
invertible, and it does not seem to be helpful to try to correspondingly 
expand Too I. 

However, what we can do is use the freedom of the row- 
inhomogeneous model to expand about the case when (for ~ small) 

xj, y; = O(e - 1 ), /~j ~ 1, j odd 

X j  = 1AI- O(g.N) ,  y j  ~ 1, ]~j ~--- 0 ( ~ ) ,  j even 
(8.17) 

Here, as in Section 7, xj, yj, #j are related by (2.2), being the values of x, y, 
/~ in row j (between original spin rows j and j +  1), and j =  1 ..... M. To 
leading order we take/~j = xJyj for j odd. 

From (2.1), when e = 0  the weight functions W(n), W(n) are both 
equal to 1 for odd rows, 6,,o for even rows. It follows at once that in this 
case  Tco 1 = / .  

Expanding to first order in e, taking M odd, and using the results 
(8.7), (8.13), (8.14) for Tco~, we obtain 

N r 
T ~  - { I +  ~col}  (8.18) 

gl g2"'" g i  
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where, if the limit is taken so that  the quantit ies 

O~j=g--l/(xd)2j-~.g,--l#zjY2j/Xzj, ~Jj-.~-g,-l/x2j_ 1 (8.19) 

are held fixed, then 
r 1 

~ c o l  = - - 2  o~jXj-- i  ~)jZJZ7-11 ( 8 . 2 0 )  
j - i  j = l  

Here Xj, Zj  are the N r 1-dimensional opera tors  used in refs. 3 and 5: 

r 1 

(x;)_,=a(~j,~;+l) lq a(~k,o~) 
k = l  
~J (8.21) 

r 1 

k - - I  

For  the bounda ry  cases, Z o = ~oaBI and  Z ,  = L 
F r o m  (8.16), (4.2), and (7.1), the eigenvalues of  ~ o l  are 

E = - ~ sj~0 nj (8.22) 
j = l  

where nl ..... r/r are again any integers between 0 and N -  1 satisfying (4.3), 
i.e., nl + . .-  + n~ = aB (rood N). 

The  sl ..... sr must  satisfy 

SlS2""S~ = 71 ~2""7~ (8.23) 

and s N, SzN,..., S N are the r zeros of the p o l y n o m i a l / ) ( z ) ,  where 

b(z)=(1, O) Bl(z) B2B3(z)... Bac_ lBM(Z) ( ; )  (8.24) 

and 

B2j_ ~(z) = \ i z~ /2  _ 

(8.25) 
0 

[-The original ~j are equal  to esj. The p o l y n o m i a l / 3 ( z )  is p ropor t iona l  to 
the D ( c o s 0 )  of  (7.1), with cos O=(I+eNz)/(1--~Nz), evaluated in the 
desired limit e ~ 0, keeping z, e j, 7j fixed. ] 

Define ql,  q2 ..... qM by 

q2j-1 = Y j ;  q2j=O~j (8.26) 



Chira] Potts Model 35 

and define a set of two-dimensional matrices 

(8.27) 

Then we can rewrite (8.24) as 

D(z)=(1, O) BI(z) B2(z)'" BM(Z) (z~ 2) 

From this one can verify that 

/5(z) = det(A - z~i2I) 

(8.28) 

(8.29) 

where A is the M + 1 by M + 1 bidiagonal matrix 

i O qN/2 0 1 
q~'/2 0 qN/2 

qN/2 0 
A = . .  (8.30) 

0 q~2 

q~2 0 

'To summarize this last result: the Hamiltonian ~ o l  is given by (8.20), 
with arbitrary coefficients el,..., c~r 1, 7l ..... 7r. All its N r i eigenvalues are 
given by (8.22), with s u ..... s u being the zeros of / ) (z) .  

'This is an amazingly simple result. For  N =  2, J(~ol is the usual Ising 
chain operator, and the result can be obtained from Clifford or free- 
fermion algebras. ~18'2~ 

It is natural to ask whether there is some appropriate generalization 
of this algebraic approach that will as readily yield (8.22). Further, can 
it be extended to periodic boundary conditions on the chain (from top 
to bot tom of the lattice)? (Such an extension does not seem as 
straightforward as one might hope.) 

Note that the family of matrices Too 1 (with different x, y) do not com- 
mute, and hence do not commute with )ffcol. To obtain commutation, we 
must go back to the full solvable chiral Potts model (1'2) with periodic 
boundary conditions. 

9- S U M M A R Y  

We have obtained exact and explicit expressions for the partition 
function of the superintegrable chiral Ports model, with fixed (or free) 
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boundary conditions at top and bottom, periodic from right to left. We 
have also obtained some of the eigenvalues of Trow and all of the eigen- 
values of Tool. In Section 6 we have considered the large-lattice limit, 
obtaining the bulk and surface free energies, and the horizontal and vertical 
interfacial tensions and correlation lengths, and studied their critical 
properties. The model is intrinsically anisotropic, with different exponents 
in the horizontal and vertical directions. This is reflected in the fact that at 
criticality the finite-size corrections do not have the usual form predicted 
by conformal invariance. (9'1~ 

The eigenvalues of Too I have a simple direct product structure, and 
T~o ~ is a sparse matrix that can be thought of as the transfer matrix of an 
"inverse" SOS model. Too ~ has these simple properties even for a row- 
inhomogeneous model, where x and y vary arbitrarily from row to row. 
Since k' can vary, this model is not necessarily Z-invariant:/19) this in itself 
sets this model apart from most of the other exactly solved models in two- 
dimensional statistical mechanics (except of course the Ising model, which 
is the N =  2 case of this model). 

The inverse model contains two types of spin: two-valued and N- 
valued. It is natural to associate the N-valued spins with the horizontal 
lines in Fig. 5, and the two-valued spins with corresponding vertical lines 
(through the open circles of Fig. 5). Perhaps this gives a clue to the origin 
of the intrinsic anisotropy of the original model: the horizontal direction is 
associated with the original N-valued spins, but the vertical direction with 
"reduced" two-valued spins. 

Finally, we have taken a limit when Too~ becomes the identity 
operator. (This limit is unlike the Hamiltonian limit for, say, the eight- 
vertex model; w of ref. 12: then the transfer matrix becomes a shift 
operator.) By perturbing about this case, we have obtained the 
Hamiltonian ~(~ol given by (8.20). Its coefficients are completely arbitrary, 
yet for all choices its eigenvalue spectrum is a direct sum. This property 
suggests that there may be an appropriate generalization of the corre- 
sponding Clifford algebra technique for the Ising model. Such a generaliza- 
tion may provide a more direct way of solving this (and possibly other) 
models. 

A P P E N D I X  A 

In Eq. (7) of ref. 4, a function F(a, b) is introduced, defined by 

N 1 

b)= 
d - - O  

W(a-d) W(b- d) W'(d) ffl'(d) (A1) 
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Here W(n), W(n) are given by (2.1), so 

W(n) l/V(n)= con(1 - x)/(1 - xco ~) (A2) 

while W'(n),  g/ ' (n)  are given by the same equations, but with x, y replaced 
by x' = y 1, y, = coSx-1. Thus 

W'(n)  IYK'(n) = oon(y - 1)/(y - co n) (A3) 

Substituting into (A1), we get 

N 1 

F(a, b) = ~b[~a-b(1 -- X)(1 -- y)  ~ 0(0.~ d) (14) 
d = 0  

where the function ~b is 

Z b Z - -  X ( D  j - 1 

= H+ (15) O(z) ( z _ y ) ( z _ y e ) a + l ) / =  2 z - Y  c~ 

Provided 0 ~< a < b ~< N -  1, ~b(z) is a rational function with only simple 
poles at z =  y, y~o ~'+ 1 ..... ye) b, and ~b(oo)=0. Hence ~ x-independent coef- 
ficients A~ such that 

~(z) = ~ A k / ( y  - o)-kz)  (A6) 
k 

k taking the values 0, a + 1, a + 2,..., b. Hence 

N - - 1  N - - 1  

~b(COu)=ZAk ~ (y--con) -1 (17) 
d = 0  k n = 0  

(taking n = d - k  and using periodicity). 
The rhs of (A7) is proportional to Ao+A~+ 1 + ... +Ab,  which, from 

(A6), is y~b(0). However, from (A5) it is obvious that ~b(0)= 0. Hence the 
rhs of (A7) vanishes and, from (14), 

F ( a , b ) = O  if O < < , a < b ~ N - 1  (A8) 

This is the result used in ref. 4. 

A P P E N D I X  B. N U M E R I C A L  C A L C U L A T I O N S  

For various values of L, N, and Q (up to about L = 7), we numerically 
verified (2.19) and (2.20). Starting from re,  we successively built up a basis 
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for V o by repeated multiplications by Ho and Jt~, making a Gram-Schmidt 
orthogonalization of every new vector generated, so as to keep the basis 
linearly independent and orthogonal. In every case the basis turned out to 
be of dimension 2 m. 

Our construction ensured that ~0 was diagonal..~ then has to be block- 
tridiagonal, with nonzero elements (i, j)  only when (~o)ii-(~o)jg = - 1 ,  O, 

or 1. Since ~0 has repeated eigenvalues, we could apply further unitary 
rotations that left ~0 unchanged, while ensuring that any element (l, j )  of 

vanished if i r  j and (~0)i+ = (~o)j/. The quite startling effect of this was 
to make ~ an even more sparse matrix (with only m + 1 nonzero entries 
per row or column), with many of the nonzero entries equal. In fact, we 
found by inspection (to numerical accuracy) that Jg ~o and ~ were the 
k'-independent and k'-proportional parts of (2.20), respectively. Thus, with 
respect to this basis, H =  ~ = ~0 + k ' ~ ,  and P--I .  

Since the construction of this basis was independent of k', the calcula- 
tions provided convincing evidence (but not of course a proof) that the 
unitary matrix P in (2.18.) and (2.19) is independent of k'. 
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